

TECHNICAL REPORT 81-02

Quarterly Technical Report:

by

James F. Wittmeyer, III

Computer Systems Management. Inc.
1300 WILSON BOULEVARD, SUITE 102

ARLINGTON, VIRGINIA 22209

* * -

TECHNICAL REPORT 81-02

QUARTERLY TECHNTCAL REpT. -

' / MICROCOMPUTER SOFTWARE ENGINEERING,
DOCUMENTATION AND EVALUATION" ii

ARPA Order No.: 3829

Contractor: Computer Systems Management, Inc.
1300 Wilson Boulevard, Suite 102
Arlington, Virginia 22209

Effective Date
of Contract: 11/5/79

Contract Expiration

Date: 9/30/81

Contract No.: /' MDA903-80-C-0l55//1 9/P ' -

Principal Investigator: /l 4#tr. James F./Wittmeyer, III
(703) 525-8585

Contract Period
Covered: 1/1/81 - 3/31/81

Short Title of Work: Microcomputer Software Engineering,
Documentation and Evaluation

This research was sponsored by the Defense Advanced Research
Projects Agency under ARPA Order Number 3829; Contract Number
MDA903-80-C-0155; and Monitored by DSS-W. The views and con-
clusions contained in this document are those of the author
and should not be interpreted as necessarily representing the
official policies, either express or implied of the Defense
Advanced Research Projects Agency or the United States Government.

.. . -

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE le.n Date Entered_)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER,1 81-02 .. %?2- --
4. TITLE (aid Subtitle) S. TYPE OF REPORT A PERIOD COVERED

Microcomputer Software Engineering, Quarterly Technical
Documentation and Evaluation 1/1/81 -.3/31/81

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

James F. Wittmeyer, III MDA903-80-C-0155 -

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Computer Systems Management, Inc. DARPA Order Number
1300 Wilson Boulevard 3829
Arlington, Virginia 22209

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA 3/31/81
1400 Wilson Boulevard 13. NUMBER OF PAGES

Arlington, Virginia 22209 45
14. MONITORING AGENCY NAME A ADDRESS(If diffeent from Confrolling Office) 1S. SECURITY CLASS. (of thie report)

Defense Supply Service-Washington (DSS-W) Unclassified
The Pentagon
Washington, D.C. ISa. OECLASSIFICATION/DOWNGRADING• SCHEDULE

IS. DISTRIBUTION STATEMENT (of thle Report)

Recommended for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the obstract enteredin Block 20, It different from Report)

Recommended for public release; distribution unlimited.

I. SUPPLEMENTARY NOTES

None.

It. KEY WORDS (Continue on reverse side It neceesary and Identify by block number)

Microcomputers; software engineering; software evaluation;
documentation.

20. ' STRACT (Cmtfe mI rv.re, sid H neuw.,oy d if.nily, by block rvt bsr)

Microcomputer software for defense applications should be
engineered structurally, informed by requirements analyses,
documented unconventionally if necessary, and systematically
evaluated against an explicit set of performance criteria.

DD I 1473 EITION OF I NOV65 IS OBSOLETE SECUNCLASSIFIED
SECUITY CLASSIFICATION OF TIfiS WAGE[(When Data Enceres!

SUMMARY

This Quarterly Technical Report covers the period from
January 1, 1981 to March 31, 1981. The tasks/objectives and/
or purposes of the overall project are connected with the design,
development, demonstration, documentation, and transfer of
advanced command and control (C2) computer-based systems; this
report covers work in the microcomputer software engineering,
documentation, and evaluation areas. The technical problems
addressed include structured programming, unconventional docu-
mentation, and multi-attribute utility-based software evaluation.
The general methods employed include software requirements
informed structured programming, animated and computer-controlled
fiche-based documentation systems, and computer-based software
evaluation systems. Technical results include recommendations
regarding production rule software selection systems, animated/
fiche-based documentation systems, and multi-attribute utility
models for software evaluation. Future research will present
additional research on microcomputer software and systems design
and development.

iii

t

CONTENTS

SUMMARY iii

FIGURES v

TABLES vi

1.0 INTRODUCTION 1

2.0 MICROCOMPUTER SOFTWARE ENGINEERING 2

2.1 Requirements 2

2.1.1 Response Time 2
2.1.2 Operating Time 4
2.1.3 Program Status 5
2.1.4 Support Requirements

2.2 Microcomputer Software Languages 5
2.3 Programming Methods 7

2.3.1 Planning 9
2.3.2 Software Economy 9
2.3.3 Software Psychology 10

2.4 Software Engineering Guidelines and

Recommendations 11

3.0 MICROCOMPUTER SOFTWARE DOCUMENTATION 13

4.0 MICROCOC,1PUTER SOFTWARE EVALUATION 15

4.1 The Evaluation Methodology 15
4.2 EVAL 16
4.3 A Microcomputer Software Evaluation

System 20

5.0 CONCLUSION 24

6.0 REFERENCES 25

APPENDIX A - "Structured Prcgramming and Structured
Flowcharts" 27

APPENDIX B - "What is Good Documentation?" 36

iv

FIGURES

Page

Interrelationships Between Different Types of
Software 6

Format of a Multi-Attribute Utility Assessment

Model 18

Boehm, et al. s Software Characteristics Tree 22

A Microcomputer Software Evaluation Model 23

v

-"!

TABLES

Page

I/O Operation Time 3

Processing Response Times 4

Application Operating Times
4

vi

1.0 INTRODUCTION

Microcomputer "programming is a labor-intensive manufac-

turing process" (Lewis, 1979). Each year the Department of

Defense (DoD) spends billions of dollars on all kinds of macro-

and minicomputer software projects, hundreds of millions on

microcomputer programming, but relatively little on software

engineering, documentation, and evaluation research. This report

thus focuses upon several approaches and techniques designed to

improve the processes by which we program microcomputers, docu-

ment microcomputer software, and evaluate software quality and

performance--all with reference to DoD research and development

needs, requirements, and priorities.

Section 2.0 of this report presents techniques for enhanced

microcomputer software engineering. Section 3.0 looks at several

useful microcomputer software documentation techniques, while

Section 4.0 presents a multi-attribute utility-based model for

software evaluation.

o%1

2.0 MICROCOMPUTER SOFTWARE ENGINEERING

2.1 Requirements

Ideally before one attempts to build a microcomputer pro-

gram an effort is made to identify and define the driving

functional requirements which together comprise the reason(s)

why one attempts to build a problem-solving software system

(instead of some other kind of problem-solving system).

At the most basic level are several requirements which are

specific context and applications independent; that is, they

are relevant to all instances of microcomputer programming

regardless of for whom and/or what the software is to be devel-

oped.

2.1.1 Response Time - The first is response time. Note

that the issue here is not how fast or slowly the system responds

to a particular user vis-a-vis a particular task, but how fast

or slowly it responds generally. This kind of speed (or slowness)

is a function of the software language used and the microcomputer

system I/O device times. The figure below, from Barden (1979),

presents the total response time for some standard I/O operations.

2

Operation 110 Device Time

Print line of 64 characters, Teletype 7 seconds

Print lie of 64 characters. IBM Selectr.c 4 seconds

Print lie of 64 characters. Doi-matrix 1-2 seconds
electrosensitive printer

Print lie of 64 characters Doi-matrix 1-2 seconds

impact printer

Display 1024 characters Video display I second

(entire screen interface

Displar 1024 characte-s Crt terminal 2 seconds

(ent me screern

Read or write one 100-character Audio tape cassette 2 -nutes

record ranrdomlry0or tape wth aufioma-,c or

manual sea-cli-

Read or write one 1100-chara~rer Auinio tape cassetre

reco'd to nexr pos' on on tape 30 cps 5 seconds

2C0 cps 3 seconds

Read or write one 12 28characrer Small floppy dlsk (5 r 1,2 second

record randomly on floppr d 56 Large floppy dsk (8 ,n r SeCO-d

Reaj or write one 128-characie' Small flopp dsk close to 0
reco'd to near pos t.on on i.m. Laroe floppr dS

1/0 Operation Time

But many operations are non-I/O-oriented, depending instead

upon the skill of the programmer and efficiency of the program,

which, in turn, depends upon the characteristics of the language

used and whether or not the (higher-level) language is compiled

or interpreted in operation, as suggested below (Barden, 1979).

3

Assrebly- Comepiler. Interpreter-
Language Language Language

function System System Systemi

Multiply 1030 numbers of

various sizes I ms 6 ms 6 s

Divide 1000 numbers of

vaious sizes 1.5 ms 9 's 9 s

Insert a 20.character string in

the middle of 1000 characters

of text 7.5 ms
7

5ms los

Sort (alphabehaeW a fist of 100
20-character names 0 1s 2 s 8 min

Merge 20 names into a list of

100 20-character names 25 ms 0 5 5 2 m;n

Search 100 20 character ran~

dorn~ ordered nramres 4 ms 40 ms 15$s

Search 100 20-character alpha
be' zed (0' otherwise ordered'

nrames 0,4 ms s ml .5 5

Processing Response Times

2.1.2 Operating Time - operating time equals 1/O time and

processing time. But the processing time is always dependent upon

the software languages used, the form of the language, and, of

course, the efficiency of the programmer, all as suggested below

(Bardeni, 1979).

Assembly- Comnp.iler Iashtpiratt-
Language Language Language

Appliations Syse Sya"m Saa

Soft and print 1000 namoes for

mailing list; 100 characters!
entry. diask system 25 min 25 min 105 mir

Generate inventory report of

1000 items; 100 characters'
item, disk system 25 mm 30min 41 min

Response tinme for locating and

display of one random account

from 2000; disk systems 55 5s 3 0s

Application Operatingp Times

4

2.1.3 Program Status - Another requirement has to do with

the status of the program to be developed. Programs which are

fundamentally prototypical or experimental usually bear no

resemblance to production (systems or applications) programs.

Similarly most programs developed as an initial outgrowth of

research and development are iterative in their evolution and

should therefore be developed differently from programs intended

for wide distribution and use.

2.1.4 Support Requirements - Not unrelated to all of the

above are support requirements. Is the program to be transferred

for on-line use? Or is it to be used off-line by research and

development counterparts? Such questions determine to what

extent the software must be self-contained, among other consider-

ations.

2.2 Microcomputer Software Languages

Response and operating time requirements, the status of

the program, and support requirements, among many other conceiv-

able requirements, should determine the selection of a software

language. Indeed, a set of guidelines regarding the use of one

or more languages, of the nature presented below, should be

developed and ul iated frequently in order to ensure the most

prudent and practical use of one or another language. In any case

the first task is to understand the relationships among the dif-

5

ferent types of software, as presented below (Frenzel, 1979).

[APPLICATIONS SS' S
PROGRASPORM

LOW HIGH OPERATING EDITOR ONITOR

LEVEL LEVEL SYSTEM

ACINE r ASSEmBN PILE INTERPRETER

LANGA GE L LANGuAGE CMIE

FORTRAN PASCAA ASIC APL

lnterrelationship- bet teen diflerent types of sofoiart'

In addition to such relationships are those which surround the

requirements, available capabilities, and optimal language

selection. (Note that for the purposes of this exemplar exercise

substantive requirements are not suggested since they differ

from case to case.) For example,

e If response time and operating time is
-portant then one should, assuming
programming competence, use compiler
rather than interpretive languages for
production systems;

* If a system is by definition iterative
ten interpretive languages should be
utilized; and

6

o If the talent (capability) exists, then
m-achine and assembly languages shoul--
be used to maximize the speed of pro-
duction systems, and so forth.

The point here is that based upon existing empirical studies

it is possible to develop sets of guidelines about the selection

of software programming languages against explicit requirements.

Such guidelines might even be computerized in a developmental

reference system which could be used by research and development

managers, programmers, and higher-level decision-makers who must

make major software investment decisions. Such a production

rule system would make systematic a selection process that is

now dominated by preference and accessibility.

2.3 Programming Methods

It is difficult to list or define the myriad methods now

utilized by programmers. Candidly, most do not have methods

which are reproducible (even by themselves) or verifiable.

Instead, they usually begin with what they perceive to be the

pivotal processing function and they build around it. Most

seldom even flow-chart what they intend to program.

Proposed below are several structuring techniques designed

specifically to improve microcomputer programming (also see

Appendix A for a reprint of an article on structured programming).

7

In reality they are presented to avoid scenarios like the fol-

lowing (Lewis, 1979):

Peter Plodder is slow, methodical, and very meticulous. A mild-
mannered, quiet person (with good taste an clothes), he had the irritating
habit of issuing long project completion times to his supenisor. Bluster-
ing Barton, on the other hand, was a flashy, outspoken superprogrammer
who consistently completed his programming assignments ahead of the
most optimistic estimates.

The Software Division management loved Blust. but hardly knew
Peter was alive. Corsequently, Blust was granted a sax-month leave of
absence-a biscuit for his programming accomplishments. A temporary
programmer uas hired to maintain Blust's code whale he was away.

Six weeks after Barton embarked on a plane for Africa, his payroll
system program failed. The substitute programmer immediately plunged
into Barton s program to trN to isolate the bug. Perhaps not so surprii-
ingli, he was never able to break into the code. In Blustering Barton's
race to produce code, he neglected to write easy-to-understand programs,

and his documentation was a mess. In short, only Barton himself could
repair the programs he had written.

Meanwhile, back at the desk of Peter Plodder business was progress-
ing as usual. Organization and clearl documented programs were his
trademark. In fact, Peter was called on to tr, to find the bug in Barton's
pay roll program. His timt ejtmate for the debugging task was customar-
il protracted, but the management had no choice. ith Blustering Barton
aua- and the temporari programmer stymied. the- had to go uith Peter.

Eventualli the bug was located and corrected, but everyone knew
the suorerpfogra nr ,e_had stumbled. Summaril, new programming
standards were implemented. 'Peter was invited to teach the other pro-
grammers how to z,'rite readable code. He showed everyone (including
Blustering Barto?, uheni he returned) how to make programs self-
documenting. His methodolog was adopted as the onI accepLable
methodolog, to be used throughout the Software Division.

Sound familiar? Unfortunately, a great many defense research

programmers are "flashy, outspoken superprogrammers" who produce

jumbled, undocumented software. Consequently, enhancements,

modifications, and technology transfer are all made more diffi-

cult and much more expensive.

8

2.3.1 Planning - Structured microcomputer programming is

very similar to decision analysis-based problem-solving because

it rests upon the principle of problem decomposition (Williams,

1981; Yourdon, 1979; and Ross, et al., 1975). The functions

that the program is to perform should inform the decomposition

process, and, much like a multi-attribute utility assessment

structure, represent functions decomposed to their smallest

component units. In this way programmers can adhere to a simple

rule of thumb: software solutions should never be more complex

than the problems they are intended to solve.

2.3.2 Software Economy - Lewis (1979) bluntly states that

programmers should "never vrite a large program." Instead, he

argues convincingly that programmers should write and collect

"speedcode modules" that incorporate all of the basic algorithms

which the programmer has previously used. Then the modules

should be refined onto different microcomputers in different

languages.

In a previous report (Wittmeyer, 1980) a design for the

development of generic microcomputer-based command and control

(C 2) decision and forecasting systems was presented which was

based in part upon the use of pre-programmed software modules.

It was even suggested that the routine C2 decision and fore-

casting systems functions probably numbered less than twenty-

five. If this is true then a series of modules (for retrieving

9

and displaying empirical data, for calculating value, and making

inferences, and so forth) could be developed and used over and

over again. Similarly, it wculd be possible to identify and

develop modules for information management, training, and generic

information display.

Interestingly, most defense software efforts begin from

ground-zero and even often ignore previous efforts undertaken

by the attending programmer! Clearly a great deal of programming

economy can be gained by reviewing existing software and developing

reusable software modules.

2.3.3 Software Psychology - All programming methodology

must be applied within a particular personnel context; indeed

all of the above presumes the existence of highly talented,

dedicated programmers who are as knowledgeable about hardware

as they are about software. Unfortunately, virtually every

projection available today indicates that throughout the 1980s

a critical shortage of programmers will persist. We must there-

fore maximize the output of those programmers which we do employ.

Learning, designing, composition, comprehension, testing, de-

bugging, documentation, and modification capabilities must all

be evaluated and improved. -

programming managers must pay very special attention to the

overall programming environment, the components of which include

the physical, social and managerial environments.

10

2.4 Software Engineering Guidelines and Recommendations

Requirements analyses should precede programming. Require-

ments should be matched to software characteristics, and then

recommendations regarding how to write the software should be

generated. In fact, there is no reason why a production rule

system such as RITA (Anderson and Gillogy, 1976) could not be

used for this purpose. Such a software requirements/software

characteristics/programming structure system might be of invalu-

able use to DARPA researchers specifically and to DoD generally,

and might function as follows: users could input requirements

consisting of operating and response time requirements, program

status requirements, support requirements, among any number of

other requirements and the computer system, from a knowledge

base consisting of software characteristics (updated continually),

would then make recommendations regarding optimal programming

efficiency in structured pseudocode supplemented by graphic

flowcharts of same. It might also suggest the use of pre-pro-

grammed software modules about which it has been given detailed

information. The information about software form and language

characteristics could be consensus "expert" data or data gleaned

from empirical experiences with the software; regardless, the

system would enable microcomputer programmers to benefit from

existing experience with and information about microcomputer

software and thereby generate more efficient code.

11

i Ii .. i . - -- U

This idea is aimed at supporting the microcomputer
program-

mer; more advanced ideas may very well
result in computer gen-

erated software in the not too distant future.

12

3.0 MICROCOMPUTER SOFTWARE DOCUMENTATION

Without effective documentation software dies a slow and

painful death. Along the way software research progress is

encumbered, demonstrations are complicated, and technology

transfer is undermined. Interestingly, while the disasterous

effects of non-existent or poor documentation are widely veri-

fiable, few are willing to allocate resources aimed at

improving documentation techniques. The reason is simple:

documentation and documentation research are relatively boring

analytical subtasks connected with the potentially exciting

design and development of microcomputer-based systems.

At the same time, some effort has been made to define and

improve documentation (see Appendix B), and given the progress

recently made in voice input/output system development, video

technology, interactive graphics technology, and computer-

controlled microfiche systems development, it is now possible

to experiment with the development of several variations of

unconventional documentation not possible just five years ago.

For example, systems should be programmed to introduce and

explain themselves in a manner not unlike that which is used

by manufacturing vendors. Such demonstrations could be of

invaluable help to those who must convinve others that what

they have developed may be of real use. Documentation should

13

also be transformed from the inanimate to the animate. Computer-

generated system specifications and functional descriptions can

be of immense transfer use, as can on-line users manuals. Simi-

larly, films of documentation can also help to bridge the gap

between the developer and the user. Here computer-controlled

fiche could be used to minimize cost, time delay, and obsolescence.

Similarly large screen display systems could be used to present

complicated documentation "blueprints" to large audiences and

program conversion teams and groups. Self-documentation and

automatic flowcharting systems should also be developed. Indeed,

the approach now taken by MIT regarding the development of video-

disc-based training systems could be used to develop videodisc-

based documentation systems.

14

4.0 MICROCOMPUTER SOFTWARE EVALUATION

Evaluating microcomputer software can be exasperating. In

the 1970s--with a good deal of DARPA support, however, a method-

ology was developed to assist decision makers with complicated

evaluation problems. The methodology was subsequently incarnated

as a microcomputer program called "EVAL."

4.1 The Evaluation Methodology

At the core of EVAL lies an evaluation methodology known

as multi-attribute utility theory (MAUT). Developed at the

University fo Southern California by Ward Edwards, MAUT "can

spell out explicitly what the values of (a) decision maker are,

... and show how much they differ" (Edwards, 1977). The values

themselves are determined against a set of evaluative criteria

(or attributes) which are arranged hierarchically in a MAU model.

The construction of a MAU model thus begins with "the overall

top-level criterion for which a comparative evaluation score is

desired. That factor is successively decomposed into its com-

ponent criteria in descending levels of the hierarchy such that

each successive lower-level criterion is more specific than those

at the preceding level..." (Allardyce, et al., 1979). The cri-

teria are then weighted in terms of their importance and then

the decision maker scores the objects under evaluation against

all of the criteria.

15

4.2 EVAL

EVAL is a generic APL program which currently resides on

an IBM 5110. Through EVAL, a decision-maker can create, store,

retrieve, and refine MAU models interactively. A Typical MAU

model appears below.

The use of EVAL is fixed according to the following ele-

ments (see Allardyce, et al., 1979):

e The Evaluation Problem:

- A label identifying the problem;

9 Criteria:

- A set of evaluative criteria decomposed
into component criteria;

e Alternatives:

- A list of (labeled) alternatives which
the decision maker must evaluate;

0 Utility Scores:

A list of scores (expressed as a number
between 0 and 1) representing the relative
utility of each alternative evaluated
with respect to each (bottom-level)
criterion;

* Relative Importance Weights:

Weights which describe the relative
importance of lower-level criteria.
All criteria (expect for the overall
/top-level 7 criterion) are assigned
importance weights;

16

e Data Identification Numbers (DINs):

These are assigned to each criterion
and describe how the criteria are
related. This numerical labeling
process is shown in the following
figure. (For example, the sub-criteria
of criterion 1 have data identification
numbers 1.1 and 1.2.)

The above input specifications can then be processed to

yield the following results:

e Overall Results:

The overall value or "worth" associated
with each alternative obtained by
weighting and adding the value scores
assigned to the bottom-level criteria,
aggregating from the bottom to the top;

e Normalized Weights:

- A set of vectors corresponding to the
relative criteria importance weights;

0 Intermediate Results:

- Values assigned to any of the inter-
mediate criteria as they contribute
to the overall results;

9 Cumulative Weights:

Weights corresponding to the relative
criteria importance weights calculated
as follows: "top-level criteria com-
prising the overall evaluation have
cumulative weights equal to their
normalized weights. At the next lower
level, the criteria are assigned a
cumulative weight computed by multiplying
the normalized weight by the cumulative
weight of the factor to which it is
attached, and dividing the product by
100. This process is continued down

17

z0

wp

at 2
0 0

0 0

z

IJJ E9

z -j

> wu

'Ic-

LLu

t 0

0 u0

0-0

ccU
Mo.-:

18Z

through the structure until all criteria
have been assigned cumulative weights.
The cumulative weight (CUMWT) indicates
the relative importance of the criterion
to the overall evaluation" (Allardyce,
et al., 1979);

* Sensitivity Analysis:

The user identifies a single criterion
of interest and assigns the maximum
and minimum cumulative weights that
it may assume. EVAL then varies the
cumulative weight of the criterion in
increments of one-tenth of the difference
between the maximum and minimum weights,
while the other weights in the model
maintain their previously assigned
proportional relationships with one
another. Generally, the alternative
that receives the highest overall
utility will change- as the criterion
weight is incremented from W W to Wmax.
The changes are referred to nthreshold
points, as shown below. (Note that the
alternative having the highest value
is designated with an asterisk.)

1.2 PERFORMANCE CURRENT CUMWT: 55.00
WEIGHT A B C D E

.0 63 54 50 68 74*
10.0 63 56 52 66 73*
20.0 64 59 54 64 72*
30.0 64 62 56 62 71*
40.0 65 64 58 60 70*
50.0 65 67 60 58 69*
60.0 66 70* 62 56 68
70.0 66 72* 63 54 67
80.0 67 75* 65 52 66
90.0 67 78* 67 49 65
100.0 68 81* 69 47 64

SENSITIVITY ANALYSIS

19

4.3 A Microcomputer Software Evaluation System

Boehm, et al. (1977) have developed a software character-

istics tree which has been converted by CSM into a multi-attri-

bute utility model for the evaluation of software quality. Like

all EVAL models it is changeable; nevertheless, we think it is

probably very useful as is. Also like all EVAL models the

criteria have been defined (according to Boehm, et al., 1977):

e Accessibility: Extent to which code
facilitates use of its parts;

* Accountability: Extent to which code
can be measured;

9 Accuracy: Extent to which the output
produced by code are sufficiently precise
to satisfy their intended use;

* Augmentability: Extent to which code
can be expanded in computations functions,
or data storage requirements;

e Availability: Degree to which a system
of resource is ready to process data.
Availability. MTBF/(MTBF + MTTR);

e Communicativeness: Extent to which code
facilitates the specifications of inputs
and provides outputs whose form and con-
tent are easy to assimilate;

* Completeness: Extent to which all parts
of code are present and developed;

* Conciseness: Extent to which excessive
information is not present;

* Consistency: Extent to which code con-
tains uniform notation, terminology, and
symbology within itself, and external
consistency to the extent that the con-
tent is traceable to the requirements;

20

* Device independence: Extent to which
code can be executed on computer hard-
ware configurations other than its
current one;

* Efficiency: Extent to which code fulfills
its purpose without wasting resources;

* Human engineering: Extent to which code
fulfills its purpose without wasting
users' time and energy or degrading their
morale;

* Legibility: Extent to which function is
easily discerned by reading codes;

* Maintainability: Extent to which code
facilitates updating;

* Modifiability: Extent to which code
facilitates the incorporation of changes;

9 Portability: Extent to which code can
be operated easily and well on computer
configurations other than its current one;

e Reliability: Probability that an item
(device or program, system) will function
without failure over a specified time
period or amount of usage;

e Robustness: Extent to which code can
continue to perform despite a violation
of the assumptions in its specifications;

e Self-containedness: Extent to which code
performs its explicit and implicit functions
within itself;

e Self-descriptiveness: Extent to which
reader of code can determine its objectives,
assumptions, constraints, inputs, outputs,
components, and revision status;

e Testability: Extent to which code facili-
tates establishment of verification cri-
teria and supports evaluation of its
performance;

* Understandability: Extent to which purpose
of code is understandable to reader; and

e Usability: Extent toich code is reliable,
efficient, and human-engineered.

21

As presented previously (Wittmeyer, 1980) , the Boehm, et al.

(1977) software characteristics tree is as follows:

Portability.-~---- Device-independence

Self-containedness

Accuracy

Asi . Reliability Completenes%

U. Robustness Integr't%

Consistency

Efficiency Accountabjth!

General Device efficiens
UtIlit%

Human engineenng Accessibility

Communicativeness

Testability Self-descniptiveness

Structuredness

Mintainabihts

"WUnderstandability Conciseness

Legibility

Modifiability Augmsentability

When this tree is arranged hierarchically in a multi-attribute

utility model, it appears as follows:

22

LU Z, I ,
U LU U LL.

0- z -i
LLJ LLJ ui

LLJ Q (n z
ui z

LLJ
-T I I I zI z w I LL) w I -

Z LLI U) LID M U-- 6 0 LLJ L) U -iu cn ca - L) -i L) < LLJ Z0 z C.L V) 0
I >- - 0 u

ZZ Uz
LLLLJ

U
z

LLJL) cn I-- zV)
w U- L) U

LL u QQ u mzw
LLJ

Z La

Ix
< In I-- (D

M LLJ_j > LL'Si 71 CIO -< 0 z 0 zIx - u M L) M MLu -i < <z
LLJ
C)

a.
< zLL cr

-i u ! LU
LLJ (n 0 z L) L)=:I U) LU u u <

LLJ
CIO

ui
In 0

LU Z LLJLU u
_j z

u

z go
< uj z
z 0 <

z -
V)

co cl
L) < m uj

cc
LU cn

C- <
U-

23

'A

5.0 CONCLUSION

This report suggests the following:

" A set of programming standards including
especially structured programming tech-
niques, should be developed and applied
to DARPA/DSO/CTD projects;

" A computer-based production rule system
should be developed which would enable
programmers to input programming require-
ments and receive guidance and recommen-
dations regarding how to program, which
language to use, and the like;

Software documentation should be animated
via several media including computer-
based fiche and videodisc systems;

" Automatic flowcharting and self-descriptive
software systems should be developed and
tested for their documentation effective-
ness in technology transfer contexts; and

" Multi-attribute utility-based models of
software quality should be developed and
exercised in order to assess existing
and improve on-going software projects.

24

6.0 REFERENCES

Allardyce, L.B.; Amey, D.M.; Feuerwerger, P.H.; and Gulick,
R.M. Documentation of Decision Aidin Software: EVAL
Functional Description. McLean, Virginia: Decisions and
Designs, Inc., November 1979.

Anderson, R.H. and Gillogy, J.J. Rand Intelligent Terminal
Agent (RITA) : Design Philosophy. Santa Monica, California:
The Rand Corporation, February 1976.

_ Rand intelligent Terminal Agent (RITA) : Reference
Manual. Santa Monica, California: The Rand Corporation,
December 1976.

Edwards, W. "How to Use Multiattribute Utility Measurement for
Social Decisionmaking." IEEE Transactions on Systems, Man,
and Cybernetics, Volume SNC-7, Number 5, May 1977, pp. 326-
340.

Barden, W., Jr. Microcomputers for Business Applications.
Indianapolis, Indiana: Howard W. Sams and Co., 1979.

Freeman, P. and Wasserman, A.I., eds. Tutorial on Software
Design Techniques. IEEE Computer Society, 1980.

Frenzel, L.E., Jr. "Understanding Personal Computer Software."
On Computing, Winter, 1979.

Higgins, D.A. Program Design and Construction. Englewood Cliffs,

New Jersey: Prentice Hall, 1979.

Howard, J. "What is Good Documentation?" Byte, March 1981.

Lewis, - Software Engineering for Micros. Rochelle Park,
New Jersey: Hayden Book Company, Inc., 1979.

Ross, D.T.; Goodenough, J.B.; Irvine, C.A. "Software Engineering."
Computer. IEEE, May 1975.

Shneiderman, Ben. Software Psychology. Cambridge, Massachusetts:
Winthrop, 1980.

Waite, M. and Pardee, M. Microcomputer Primer. Indianapolis,
Indiana: Howard W. Sams & Co., 1980.

Williams, G. "Structured Programming and Structured Flowcharts."
Byte, March 1981.

25

" " '' Y

t7
_ "Applied Structured Programming." Program Design.

Blaise Liffeck, ed. Peterborough, New Hampshire: Byte
Books, 1978.

Wittmeyer, J.F. Defense Microcomputing in the 1980s. Computer
Systems Management Technical Report, December 1980.

Yourdon, E.N., ed. Classics in Software Engineering. New York,
New York: Yourdon Press, 1979.

26

APPENDIX A

"Structured Programming and Structured Flowcharts"

by

Gregg Williams

27

Structured Programming
and Structured Flowcharts

Gregg Williams, Editor
BYTE

POB 372
Hancock NH 03449

Structured programming-that shows a problem and its solution bility of breaking a task into a set of
phrase, unfamiliar to me and, I written in this outline form. subtasks that accomplish the main
assume, to most people several years The above example demonstrates a task when executed sequentially.
ago-is now endowed with such process known as decomposition: The second construct, if... then...
magical powers that most books on breaking a task (problem) into its else, performs one of two subtasks,
programming include it somewhere in subtasks. This process represents the depending on the truth or falsity of a
their titles, most important concept in structured stated condition. An everyday exam-

But what is structured program- programming, ie: that a problem can pIe of this construct is given in the
ming7 Most of us feel that it is prob- be solved by repeatedly breaking it following sentence: "If it is raining
ably good for us, like getting regular into subproblems, until every sub- outside, I will take my umbrella with
exercise or brushing our teeth after problem can be solved. If you plan me; if it is not, I will leave the um-
each meal. You may also think it's this decomposition before you try to brella at home."
too complicated (not true), that it write it out in the narrow, precise, The third and least familiar con-
slows down programming (wrong, it and time-consuming syntax of the struct, while.. do, is actually a
usually speeds it up), or that it cannot target language (6e: the programming generalized do-loop that repeats a set
be done unless your computer runs a language you use to solve the prob- of actions (called the body of the
language like Pascal or ALGOL lem), you will have a better chance of loop) while a stated condition is true.
(wrong again), getting your program right the first You use this construct when making

Simply put, structured program- time. iced tea from a mix: "As long as
ming is a set of techniques that makes (while) the mix is not completely
programs easier to write, easier to dissolved, I will continue to stir it."
understand, easier to fix, and easier It has been If you combine lines of code in the
to change. These techniques are sim- mathematically proven three ways described above, the re-
pIe and general and can be adapted to that any program can suiting program is said to be struc-
any computer language that has a tured. In most languages (BASIC, for
goto statement-that includes be written using three example) you will still use goto
BASIC, assembly language, FOR- basic constructs. statements, but they will be restricted
TRAN, and COBOL. The purpose of to carrying your program to specific
this article is to show you a new form points, ie: the beginnings and ends of
of notation that will help you write But how do you decide which way tasks or subtasks. Each module (sub-
structured programs. But first, let's to break the problem into sub- task) in a structured program has a
review structured programming, problems? Common sense helps. Ask property known as "one-in, one-out";

yourself, 'What sequence of actions that is, there is only one entrance and
The Elements of Structured Pro- and decisions would I have to make if one exit from these modules, and no
gramming I were doing this without a module will ever jump into the mid-

A structured program is like a set computer?" die of another one. Instead of being
of notes written in outline form. The The rest of the answer comes from like a plate of spaghetti, a program is
headings accompanied by Roman nu- the literature of structured program- more like a string of pearls (with each
merals-I, II, III, and so on-provide ming. It has been mathematically pearl containing another, smaller
the overall organization. Each Roman proven that any program can be writ- string of pearls, and so on); each
numeral topic is broken into several ten using three basic patterns, called module has a definite and unchanging
component topics (A, B, and C, for programming constructs (or simply position on the string. When such
example) and each of these is sub- constructs): sequence, if.. .then.. else, regularity can be counted on, existing
divided further (1, 2, 3, ...) and fur- and while ... do. The first construct, modules can be changed or deleted,
ther (a, b, c, ...) as needed. Table I sequence, gives you the basic capa- and entirely new modules can be add-

Ins ~us~ im28

I
I
I .
. i

Best
Available

Copy

About. awl ym I -'W$W4 Alp rc,. 4ess uulglc mAy have a

strc~rd nvrmnt letkndo ,)rwc & qu~ality of
&ign, 'an M*d witai 4fu ~~(n " ia~ .ae ly tow tha ar
computer progiram I hedad gng fsd - Winu t db"litM that m-
eeu booksl an the subiect &etua4,re, w .- ,etuatd and taeghe in the 1.
t hroush a a"-d' m. It -, ~ i Udt&84P Jsecigiwus' * prti._
Succese f y epiam 6h 1cinq >; be 1sa& Waut- *wa *v&k,*, . .~ TU pass, o~f these paragraphs
to i~ in In * w . s afl . fits. to all inn that the
books spkWINp~ ' 0J~wEta c0rtai desin.. Midiai; &esrGbe in this article
but I ame the coeat ohem* t#&" withi a iupoew In signfiw'at improve-
same structured orromwumbWiog'a~h y h iat 5t in &ou rail as a pogram-
tools applied to the wlofer Process 4I6I. p i'iiV *Pic-.-ta te resffcen o

ofprgrmAmp-J is. rtuimlg is a bondwl ~ay programs; and, second, to
-m hmngastuto 'go 1W - bW& &Kn~*ln 1Wh1s- aiMphasize that thle quality of a

solved into a set of programs duet Wh~~eriith Oke Weel gig- -priagro an u ota be greatly im-
will Accomplish the task. I am 4 Mel * roblem wno, the ,proved by attention to the design
more wrong than t~ht, t.- A7 #p'wn' staemnts ":;t jeqsions; that are made in the early

Thrughmy xpeiene wth.a. sovesft.I, ah 'hile snmi- tsges -o anayzfng the program
particuar programming project.! smo tgmm -eea di~ te oveiffl des(glif. lam becludinga &it of per-
suddenly recognized a majlor Pon 4WalgrtM to Ae used (eg: bubbl dicaday heWpu books and articles
that I had formell wilt cOMPre-l Adirt 4W JagWiort the defta uinac- thed ref eemw at the end of tis
hended: that structured program- Wiell UW (eg: linked hass, wraps, at&*i.
inen does not encompass, the sew -or b&"naryss). arid implements-
tire process of programming. 7he J10im detis h : eueta or w-. .-

ed without problems caused by unex- sometimes called top-down design or out of control. I could not have done
pected module interaction, programming by stepwise refine- this without the ngorous use of struc-

That is the theory of structured ment-and structured programming.) tured programming techniques.)
programming-now for putting it in- As my programs grew larger, I be-
to practice. Figures 1 thru 3 show the The Origins of a New Notation came dissatisfied with the methods I
three constructs (sequence, if... When I got my first job as a com- used to plan my programs. Conven-
then... else, and while... do) in stan- mercial programmer, I realized thatI tional flowcharts obscured the struc-
dard flowchart form and as BASIC was going to have to write longer ture of my programs. Nassi-Schnei-
code. (For a more detailed look at programs than I had previously writ- derman charts and Warnier-Orr dia-
writing structured programs in ten. This prompted me to adapt struc- grams were unsatisfactory for other
BASIC, see "Applied Structured Pro- tured programming techniques to my reasons.
gramming,." listed in the references. work in BASIC, COBOL, and RPG The best solution offered in struc-
This article appears in an anthology 11. (As it turned out, my longest pro- tured programming texts was struc-
that contains several other good ar- gram was a 35-page COBOL program tured pseudocode, an informally
ticles on program decomposition- that grew to 75 pages without going written Pascal-like "program" that

uses terse English phrases to describe
the program. Listing 1 shows the
structured pseudocode for the pro-

Problemn Giver) a numeric array V wilt) N Solution gram outlined in table 1b. I used
elemr'tW 1idtelre~ lmn.MX,. Set problem up structured pseudocode extensively to

and its index. MAXINEX These variables A. Set MAXVAL -9 x 10 ouln rgrmYuCoudta h
are related as follows El. Set MAXINDEX 0 details poghersbutn peundohodte

C. Set INDEX =1dealoftersligpuoce
I < MAXINDEX < N 11 ind largest element often obscured the overall design of

*MAXV = V (MAXINDEXI A. Set up a loop that increments the thprga
* tAXV is the largest value in l/f), variable INDEX from the beginning to the thn pretrosetIcnme.ta

V(2). V(Nl end of the array V.InrtopcIansehtI
For each value of INDEX wanted a design notation that could

Table 1: A problem and its solution in 1. Compare the current array value (V otefloig
(INDEX)) to MAXVALdoteflwigoutline form The common outline ai AVLi qa rlre.d

form used for summarizing a body of nohng *Completely describe the algorithm
materia! can also be used to give struc- b it MAXAL is smaller, replace MAX- to be programmed
ture to the emerging design of a pro- VAL with the current array value and

gra. Tblela ive a tatmen ofthe MAXINDEX with the current index *Provide overview and detailed
gra. TbleIa vesa sateentof he (the value of INDEX) documentation that was easy to readproblem and table lb gives its solution Ill. Print the largest element (MAXVAL) and itSs~ o edt erdaneeytm

in outline form, index (MAXINDEX) *o edt erdaneeytm

~ ~ ~29

L~das 1: A structured pseudocode solution of the F1NDMAX problem given in the textd o n 't is ki and in table 2. Structured pseudocode is a terse, informal, Pascal-like program that

magnetic d m g to helps the user design a program before writing it in a formal programming language

EDP storage media Initiali~e sysem variables (MX 9 x 1030, MAXINDEX =0. INDEX 1)

Many cmputer usrshave learned'thtehard way'that tind value of current array element (CURFRV - V (INDEX')
accidlental exposure to magnetic fields can erase or Ji current array element (CURRV) > maximum element so far (MAXV)
after data and programs stored on disks and tapes new maximum element - current element
Such irretrievable loss can occur during media transit new maximum index - current index (MAXINDEX -INDEX
or storage it unprotected disks or tapes are exposed to endif
thle magnetic fIds produced by motors, transformers, increment INDEX by I
generators, electronic equipment, or ewen intense tran- endwhile
sient fields induced by electrical storms. print MAXV, MAXINDEX

Data-Sale Products provide reliable, economical (end of program)
protection against stray magnetic field damage by
shielding disks and tapes with the same high-permea- Litn2:ABSCipeettoofheFNMXrblmrmtae1.Itisr-
bility alloy used to shield cathode ray tubes and other Usig2ABAIimlmnaonfthFNDA prbefomale nthsr-
magnetic-senstive components DISK-SAFE Floppy gram, the variable MAXINDEX has been shortened to MINDEX to distinguish it from
Disk Protectors, punched for 3-ring binder, sandwich the variable MAXV. This program is written in TRS-80 Model I Level 11 BASIC, and it
two 8 disks, or smaller mini-disks, between sheets of will run on other computers that use Microsoift BASIC
magnetic shielding alloy encased in the strong vinyl .1'
pockets (Binder sent free with 10 Protectors 1 10i' REROc~kAM FINDMA1i

ISK *S FE 1'REM THIS PROG-RAM TAI ES AN ARRAY OF NUMERSF. V. ANDD IS K * A F E 14()REM FINDS THE LARGEST ELEMENT. MAYV-. AN[) ITS INDEX.
FLOPPY DISK PROTECTORS 15,, REM MAX INDEX. SUCH THt .:

16' REM MA rv= V (iMA xI NDE Y
17,''
I18' REM (FOR THE PUFFOSES (IF IL LU-STRAT ION. WE WTILL A5t1MF
I w' REM THAT THE D.4A I s AI.READ' IN THE ARf-. , V

20REM =~~- - - MAIN FROGRAM- ---- - -

-41' DIM V(12i
-5,GOSUiI 8i'. REM -- NOT FART OF ALGORITHM IN FIGURE 6; THI-_

260i REM SUBROUITINE ENTERS DATA INTO ARRAY V
27,',
2&0 REM------------~O E(X1 INI TIAL IZATI ON R1T I NE -- -- -- ----- -- --

3"'MAXv S ~*I'E'
'n :') MINDE'X 0

7 .4,.' REM------------- BOX 2: FIND LARGEST VALUiE----------------------

3''REM -- (BEGINNING OF WHILE ... ODO LOOFi
S70: IF INDEX N THEN 520'

38", CURRV = V (INDEXi

4 00') IF CURRV MAXV THEN 44o.
41" MAXV = CURRV: REM -- (THIS PART EXECUTED IF FALSE)
42(-, MINDEX -INDEX
43':
441" INDEX - INDEX + I
45"
4810 RE" -- N3UMF TO BEGINNING OF WHILE... D 10 LOD
4 47: GOTO 3771'

MTALPASE S HIEL 50M---------------Ox 7: PRINT FINAL VALUES-------------------

TAPE -SAFE Cassette Shields are constructed of mag- 510.'
ne11tic alloy. with fieliar-welded seams and an easy- Z.20 PR INT: F RINT "THE LARGEST VALUE IN THE V ARRAN~ IS:-
Openhlingeldtp Each attractively-finished TAPESAFE 5-0: PRINT 'ViiZ MINDEX i= IMAXY
holds one cassette in its original plastic box A -,4'', PRINT
Shelved metal FILE DECK (not shown) stores up to sis 550:'
TAPE:SAFEs for easy access (one free with each Six 560 END
TAPE SAFES) VSA and MasterCard telelphone orders 57o. REM -==--== END) OF MAIN PROG-RAM------
accepted Prices below include shipping 76.

DISK-SAFE Floppy Disk Protectors 1-5. $8.5 ea 7, E ----- URUIET ILVARY--------
6-9. 7.95 a.10 or morew*binder,.95 Uea. 78RE-------UEOLTN TOFLVARA---------
TAPE -SAFE Cassette Shields 1-5. 314.96 each, 8'." DATA 1:': REM -- (NUMFEA OF ITEMS To FE READ IN,

6 or more with freeFLE DECK. $12.1111each 81'' DAT A I . 15. - 28. -:. 24. -t1 7. 9Z. 0. t. 1,. ~I . 4. - 2oi.t
TAPE-SAFE FILE DECK 313.33 each 82'.' READ N

DataSaf Prouct, , 870 FOR 1=1 TO N: READ) V '11: NEXT I
1925 Margafet St Phill PA 19124- 215/535-3004

Deeler inquiriostivie
1,18KI 1961 1 FMT Puibbaho n, . 30

hired programming, any program
a change was made in the flowchart can be expressed as a combination ofW e d o*Use a minimum of unfamiliar nota- four basic building blocks. These are
tion sequence, if ... then... else, while... .do,
s&e visually pleasing and decomposition. (Te first threewhat heyconstructs, described in '-ventional

Thi stuctredflochat ntaton, flowcharts in figures la thru 3a, ared o b u t. . w ich I developed over a period of given in structured flowcharts in
several years, meets these criteria. figures 4a, 4b, and 4c, respectively.)

whef YO ha e BsicConsrucs i StuctredThe sequence construct (figure 4a)

Flowcharting structured flowcharts; however, a
According to the tenets of struc- later construct, decomposition, will

distinguish the structured flowchart
YOU have the best! (a) sequence construct from its conven-

The best Data I tonal counterpart.

Base Systems for *UOpP6 SUBTASKIr

dataKEY* (b)
*Index sequential and relative record files SUSooC2 0 (BASIC sateement for subtask 1)
*Fast extended search/data analysis 110 (BASIC statement for subtask 2)
(a) Fast access to specific information J20 (BASIC statement for subtask 3)
(b) Basic statistics reported from search SuUTA5K 3

*Extensive report capabilities
*Flexible sort functionPrc

Diskette versionPrc
(specify type & size) 199.50
Corvus 10 Mb version On reqRuest Figure 1: Sequence as a control structure. Figure la shows how a linear sequence of sub-

tasks is drawn using conventional flowchart notation. Figure lb shows the equiv~alent
The best Business sequence as a series of BASIC lines.
Data System f or 4oppns

SboolkKEYper*

* Fully integrated with oM ataKEY a
Accounts Payable. Receivables(a

*General Ledge'
*Transaction driven-no file size limit

SPrice(CNIO)

Diskette veso
(5peciytyp & 80size) .450.010#
Corus 10 Mb version on request

The best Personal CONDITION IS FALSE] CON DITION IS TRUE

Finance System for *UCII 112

Personal budgetKEYper*

" Fully integrated with WE dataKEY (a) CON VENrIONAL
" Checkbook manager
* Payables, manager
*Expenses statements

Diset 0eso rc b 100 IF (condition) THEN 200
(s=ecfVy ype sze) 8200.00 120 (BASIC statemrents for subtasc

__________________________done if condition is false)

Our io~lwere runs with Apolet it DO$ 3 3. or Applso'
Of Laguage System anid IS CoMpatlible with CormUS
10 Mb. S' Sorrentlo Valle arid 51/. diskette. mem~i- 190 GOTO 300
driven, anid tutorial 200 (BASIC statements for subtask done if

condition io true)
TEL (S03) 465-7354

E5IP CO(TIPUTER 299 (last statement of "true' subteak)

~ RE LIR n V . 300 (first statement of nert construct)IThe "Ifull-serlce" computer company I F4gre 2: The if... .then... else construct as a control structure. Figure 2a shows the con-

9 Ash Utreet a Hollis, NH 03049 vnt~ional notation for this construct, while figure 2b shows the BASIC equilaLent.

Much 19111 C orrs Pubbiutrom Ift 31

SUBTASK I

(o) CON VEAI7NAL I
SUBTAS'(2

(CONDIrION) IF

T(a

BODY OF LOOP

WHILE

IF SLIBTASS DONE IF (CONDITION I
ICONOIION) CONDITION _IS TRU

4 F(BAh OEI BODY OF LO7OP

10C IF (opposi!e of condi:On' THEN 3CC CODTO IIAS
I IC (BASIC state-ne-.s f-body of Iocp

done 4ccn'dj.:n ;s tr-&E

299 GOTO :0(Figure 4: The basic Structured flowchart notations Figure 4a shows the Structured l-
3C ifirs- sweren ci nex, ccns~r.,' ,'Chart notation for a sequence of tasks it is equivalent to the flowchart of figure]a

Figure 4b shows the structured flowchart notation for the if... then, else construct
Figure 3: The while... .do loop as a control (equvln to figure 2a): note that it is the placement of the letters T and F (for true anid
structure. Figure 3a shows the while.., do false) that determines the conditions under which a given subtask is performed Figirc
loot, in conventional flowchart notation 4c shows the structured flowchart notation for the while... do construct (equiv~alent to
Figure 3b' shows the equiv~alent loop in figure 3a): the diagonal line leading down indicates that the condition (in the hezagoni iIs
BA SIC codc performed before the bodv of the loop

The if.. then ... else construct is fair- construct is not needed, the box use a decision diamond and an exter-
ly straightforward in the conven- labeled F is eliminated. In this case, if nal loop (figure 3a). The structured
tional flowchart (figure 2a). In the the condition does not evaluate to flowchart version (figure 4c) intro-
structured flowchart version (figure true, no action is performed, and con- duces a new symbol, a hexagon. (Ac-
4b). the boxes to be performed are to trol continues with the next construct tually, the hexagon is used to denote
the right of the decision diamond, following the decision diamond, one 'of several kinds of loop struc-
with the understanding that only one The notation for the while... .do tures: the word while makes this a
of the two boxes will be performed construct is not as easily derived. The while... .do loop.) The box connected
based on the value of the condition in conventional flowchart cannot direct- below and to the right of the hexagon
the diamond. If the "else" side of the ly express this kind of loop: it must is performed as long as the conition

(UMILETE WITH MAN':-ALS. SOFTWARE, HARDWARE FULLY INTEGRATED, READI TO RL'\
1" ", . , ''. - , *j At.-,, -u'E it ainI dr,r *Deta~ed IQ ra5L manual inrd-I *r, Kaj n,I, knc p-n'.-L,

,rr ''I, ,; -, 4 , opH t-31 Cr I " n'.~un *hL' ' * FmpirI * Ul? *i £ikenw',, I, flrs n, I-t.

'I ,III ~%HI'II(.(i\IN, I V IiRLiFRLL! ntin, nial I A -,.I\ WE HAVE NO READER INQL1RN NUMBER PLEASE WRIT[OR CALI

JO N .OW N AS OC AT S IN .

M-rli 1061 It -r1 P,,bl..t,on, In(3 2

listed in the hexagon is true. The con-
dition is performed first (denoted by

TS X the position of the hexagon being
spatially above the box being per-

S UTsK, I formed); this allows the possibility of
the body of the loop being performed
zero times if the condition is initially

SUBTAK 2s zfalse.
The fourth and pivotal construct of

this programming notation, decom-
T position, can best be stated as a rule:

any box representing a task can be
broken into multiple boxes that repre-
sent the necessary subtasks. The sub-
tasks may be rectangular boxes that
represent simple tasks, or they may
be any other valid structured flow-

Wwhile.. .do, etc). They are written top
to bottom in the order of perfor-
mance, with the line denoting pro-
gram flow entering each subtask box
from its top and exiting from the bot-
tom.

SUBTASK 5]Figure 5 illustrates the above con-
struct. Task X is composed of five

Figure 5: Example of the subdaision of a task. A centra! rule of structured flowcharts is subtasks performed in numeric se-
that any box can be broken into multiple boxes that represent the necessary subtasks quence. Tasks 1, 2, and 5 are simple
Here, task X is broken into five subtasks executed in top-to-bottom order. Subta.sks 1. subtasks. Subtask 3 is an if... then...
2. and 5 are simple subtasks. Subtask 3 is an if ...then ...else construct Subtask 4 is a else construct that allows either sub-
while... do loop task 3a or subtask 3b to be per-

S & M Systems, Inc., the "All-In-One" Software Company
is offering a full line of Business Packages for the

"All-In-One" Z-89 Microcomputer
Inseq-80(TMI Business Software Systems

Industry Standard Osborne Based: Accounts Payable/Receivable,
General Ledger, Payroll

S & M Software: Retail Inventory Control, Invoicing,
Manufacturers Inventory Control, Customer Mail List

PLUS MANY MORE!!
All Systems have been Field Tested and are ready for shipment!

CALL ABOUT OUR NATIONAL DEALER PROGRAM AND JOIN THE BEST
IN SELLING THE FINEST SOFTWARE ON THE Z-80 MARKET!

SYSTEMS ALSO OPERATE ON TRS-80 MOD I, MOD Ii, MOD III
AND ALTOS MICROCOMPUTERS

* 0 1 ubSo 1 -61 4 1

MMhj"h 795 BY!PubIlcihos inc 3 3

formed. Subtask 4 is performed as lustrate the process of developing a far. The values of MAXV, MAX-
long as the condition within the hexa- program using structured flowcharts. INDEX, and INDEX must be set (as is
gon (B>Y) is true. Of course, any Using the example of table la, sup- done in subtasks 1.1, 1.2, and 1.3).
subtask box may be further divided pose you are given an array of N Note that this loop could have been
into its component subtasks. numbers, V(1), V(2) V(N), and done more easily using a do-loop;

Since any box can be broken into have to find the index value MAX- other optimizations could also have
componeit subtasks, you can now INDEX such that the largest value in been made, but this example is given
see how this notation is used to design the V array is MAXV-V(MAX- for the purposes of illustration only.
a program. The boxes in the leftmost INDEX). The entire structured flow- The main work for each element is
column give the overall design of the chart for this problem is given in done as subtask 2.1.2: if the current V
program; boxes are then expanded to figure 6. element being examined (ie:CURRV)
the right as each box (task) is divided Cover the right three-fourths of the is greater than the maximum V ele-
into boxes representing the appropri- flowchart so that only the subtasks ment so far, MAXV and MAXINDEX
ate combination of subtasks. As a numbered 1, 2, and 3 are visible. This are set to the current array and index
result, you can scan any one of is what the "first pass" of the flow- values, respectively. These subtasks,
several of the leftmost column of charting effort should look like. Sub- numbered 2.1.2.1 and 2.1.2.2, are
boxes for an overview of varying task I is the initialization of the prob- performed only when the relationship
depths of the program design, or you lem. Subtask 2 is the determination of given in the diamond of 2.1.2 is true.
can study the implementation of any MAXINDEX and MAXV. Subtask 3 Once the structured flowchart has
major or minor subtask by concen- is the printing of these two values, reached the level of detail shown in
trating on only the boxes and control Since the task in subtask 3 is simple figure 6, most of the design considera-
structures growing to the right of the enough to be directly accomplished in tions have been conceived and per-
given subtask. the target language (for example, fected; it is then a simple task to

BASIC), it need not be subdivided, translate the program into BASIC
An Example Subtasks I and 2 are developed (see listing 2) or any other general-

The following example will il- concurrently. Subtask 2 is basically a purpose computer language. The
loop that examines V(1), V(2) V(N) benefits are more pronounced when
in turn, keeping the appropriate used with a larger program. If a struc-
values for MAXV and MAXINDEX tured flowchart is subdivided to the
for the I elements encountered thus right until each box represents a task

1 that can be directly coded in the tar-
IT T get language, you will catch most of

the "oops, I forgot to..." insertions
I 'v.-9 Io

0 [and changes that programmers
generally think of after they have
started coding the program.

Other Control Structures
Although the three constructs

discussed so far are sufficient for
2 ,writing any program, it is not always

FIND LARGEST VALUE MAXV convenient to use only these con-
AND ITS INDEX MAXIVDEX structs. Other control structures can

be devised for the convenience of the

programmer. For example, boxes 1.3,

[CU# V.V 0NDEX/

PRINT MAXV, MAA/XIO--M 21 J21]T

IN0t1". INDEX I MAX NDEX X

Figure 6: Structured flowchart for program FINDMAX. Given an array V with N elements, the problem is to find the largest element.
MAXV, and its index within the V array. MAXINDEX. The numbers above each box give the sequence and level of that box in rela-
tion to the entire problem. For example, box I can be broken into three subtask boxes: 1.1, 1.2. and 1.3.

Manh 1901 BYTE Pubcahofn Inc3 34

2.1, and 2.1.3 in figure 6 can be re- of the loop, above and to the right of (restart the innermost containing
placed by a control structure that is its associated hexagon, is meant to loop) and the exit (go to the first task
available in most programming lan- signify that the body of the loop is after the innermost containing loop).
guages-a do-loop that varies INDEX performed before the condition is Although I have used some of these
from I to N. An example of the nota- tested. Although the meaning of this constructs for quite some time, they
tion I have devised for this is given in notation does not implicitly follow are not presented here because I am
figure 7a; the body of the loop is per- from its form, it was chosen for its not yet satisfied with the notations I
formed according to the parameters simplicity and consistency with the have developed for them. In any case,
given in the hexagon. notation already developed, structured flowcharts are meant to be

Another well-known control struc- Other constructs come to mind: a a personal notation-you should add
ture is the repeat... until loop, shown case structure, an unconditional goto, to and modify these constructs to fit
in figure 7b. The position of the body and two controlled gotos-the restart your needs.

Conclusions
I have found structured flowcharts

helpful in designing programs. The
notation is obviously intended for

FOOY OF LOOP weakly structured languages (like
BASIC), as its utility decreases when
the structure of the target language

BODY OFDOLOOP TIincreases.
DO-COOPUNTIO The notation is, at the moment, in-

formal, and it should stay that way.
It should be extended and modified in

(a) (be whatever way seems useful to you. In

Figure 7: Structured flowchart notation for a do-loop and a repeat.. until loop. In the particular, you should use additional

do-loop. figre 7a, the hexagon contains all pertinent information defining the loop, notation for special features of the

and in the form most comfortable to the user. In the repeat.. .until loop. figure 7b. the target language (eg: global and local
notation is interpreted as showing the body of the loop being executed before the condi- variables, use of a stack of inter-
tion is tested. In both cases, the box representing the body of the loop can be expanded mediate computation) when appli-
to the right, into its component subtasks cable. If the structured flowchart is to

be read by another person, however.
you should define all the structures
used in terms of their equivalent

If You Own a 56K(CP/ achfine, unstructured (conventional) flow-
charts.

Then You Should Have Leverage Ifthe final structured flowchart is
to be redrawn, you should do so with
clarity in mind. Place only those

Leverage is an innovative new informa- vided. boxes that help explain the overall
tion management system recently intro- * Flexible report generator lets you design with the main flowchart; leave
duced by Urban Software Corporation. It define report formats such as alphabetized the implementation details to subor-
combines a number of powerful tools, lists, tables, directories and schedules. dinate flowcharts.
including full screen data entry, report e A "Help Key" allows instant, in-con- I hope you will find this notation
generation, word processing, and subset text access to an on-line manual over
extraction, into an integrated, easy-to-use 80,000 characters long. useful. I would appreciate your sug-
package. The Leverage system provides i Graphic menu selection provides opti- gestions, criticism, and comments.0
many capabilities previously available only mal responsiveness and ease of use.
through costly custom programming, yet it o Written in "C," a powerful systems pro-
is designed for use by non-programmers. gramming language developed by Bell Labs References

in conjunction with its UNIX operating I Page-Jones, Meillir. The Practical Guide to
Leverage Highlights system (most of UNIX is written in "C"). Structured Systems Design New York Your-

e Data bases are easily configured to a Sophisticated programming techniques don Press, 1980
your particular applications; prototypes for like hash table coding, dynamic overlays, 2. Ross, D T, J B Goodenough, C A Irvine"Software Engineering: Process, Principles.
mailing lists, personnel rdes, appointment shell sort and heap son guarantee maxi- and Goals." Computer. Institute of Electrical
calendars and inventory systems are pro- mum efficiency, and Electronics Engineers (IEEE). May 1975

Also Tutorial on Software Design Techniques.
Leverge Program $185 Third Edition, P Freeman and A I Wasserman,
Manual alone S 15 (Applicable to subsequent purchase of program) editors Long Beach CA: IEEE Computer
Educational rates available. UNIX i, a al of Bd Labs. c'P/l of Dl Rawch Society. 19803. Williams, G. "Applied Structured Program-
If your local dealer does not yet have Leverage, use the reader service card or call ming "Program Design, Blaise Liffack. editor
Urban Software for a brochure. Peterborough NH: BYTE Books. 1978

4. Classics In Software Engineering, E N
YOurdon. ecitor. New York: Yourdon Press,

19 West 34th Street * New York, NY 10001 e (212) 947-3811 1979

MOM% 19I C am ublcatiom la

35

APPENDIX B

"What is Good Documentation?"

by

Jim Howard

36

" ""* - - 9..

What Is Good Documentation?
Jim Howard

150 Ramona Place
Camarllo CA 93010

As more and more people discover using their language and their know- this requires conscious dedication.
the joys of owning a microprocessor ledge level. (Of course, if there is a And, of course, it requires principles.
the need for good documentation will failure to communicate, it is the stu- Those principles are what this article
continue to grow. Information will be dents who fail, not the professor!) is about.
needed at all levels, from detailed The microprocessor industry is a To translate the jargon of the ex-
hardware and software documenta- classic example of the communication pert into terms meaningful to the rest
tion to descriptions of which buttons problem. Aside from a few shining of the world, we need an interpreter.
to push to play your favorite game. lights, microprocessor literature suf- Such an interpreter is similar to the

Who will provide this information? fers from a bad case of "the jargons." compiler or interpreter used in com-
The simple answer is that those who The problem was not as serious while puters, which translates the source
know will tell those who don't know. the technology was being pursued by language into one the machine under-
It sounds simple, but it's not. Every- only a few hobbyists, who like to stands. In both cases, the source
where, complaints are made about work things out for themselves. Now language is provided by the computer
documentation-"inadequate," "er- expert. The machine is the user in one
roneous, 11 "over my head," "bad or case, the public in the other.
nonexistent," and so on. All too of- Aside from a few
ten, companies market excellent sys- Information Design
tems with poor or sketchy documen- shining lights, The interpreter we require can best
tation, resulting in unhappy cus- microprocessor be referred to as information design.
tomers and unsatisfactory sales. literature suffers from This term is better than the common

It's a common mistake to believe term "technical writing," in that it in-
that because somebody isan expert in a bad case of "the dicates what really is re-
a subject, he can explain it to others. Jargons." quired--conscious, step-by-step de-
For example, it's assumed that a pro- __sign. Writing is just one aspect of pre-
fessor who knows a subject inside and senting understandable information.
out can pass on this information to that the public is becoming involved In fact, technical writing is similar to
students. However, whether he can in large numbers, the information writing code for a computer program.
or cannot depends on something else must adapt to the customer, not the If the planning and structure are
besides his knowledge of the subject. other way around. sound, the writing almost takes care
It depends on his ability to put Many could undoubtedly do a of itself.
himself in the place of the users, the better job of communicating if they There are many aspects of informa-
students, to begin where they are, followed a few principles. But doing tion design, not all of which can be

Information Design Prindples
*Content defines the breadth and direction. The users always know eFormat makes the information
depth of the material in a docu- where they are, where they have understandable through languge
meit, and is best specified by a been, and where they are going. and illustrations. Language spes
topic diagram. Consistency and Indexes and headings make the to one half of the brain-the vw-
uniformity of treatment are re- organization visible to users, so hal, linear side. Simple vocabulary
vealed by such a diagram: One that information is located easily and short, direct entences make
topic should not be treated in great and quickly. Material is grouped for e~e of understanding. llusta-
detail and others of equal impor- and sequenced to flow logically tions speak to the other half of dite
tance hardly mentioned. The and naturally from one topic to brain-the nonverbal, spatial side.
breadth and depth should fit users' another. A top-down approach is Illustrations are most effective
needs-all relevant material in- used, to provide an overall struc- when they are near the reomst
cluded, no unnecessary redundan- ture before confusing users with text and are keyed to it through
cia, and sufficient detail to allow details. Introductions and sum- call-outs and highlights. Workiq
users to understand the explana- marks tie pieces together both for- together, words and illustratios
tion or perform the job. ward and backward, and reinforce present the whole "picture" a
*Orgpizadh gives shape and for longterm memory. neither can alone.

Manh iWI C BMrr pubigaehom~ im 37

--

covered here. What is necessary is wrong if you consistently keep the us- formation must guide the users
that a few key principles are made ability objective in mind, through the task. In any case, the
clear. How do we determine if a docu- document must take them from

The basic objective of information ment is usable? Whatever the type of "here" to "there."
design is usability. Whatever the user document-operator's manual, main- That's what information design
intends to do-write a program, as- tenance procedure, reference manual, does: It starts where the users are and
semble a piece of hardware, learn training program-it has some pur- buildi step by step. The information
how a system works-the documen- pose. Its purpose may be to explain a designer first 'j.skb hnthe users are.
tation must serve this purpose. concept, describe the operation of a Then he puts himself in their place

Although this may sound trivial, if piece of equipment, or guide a person and asks, 'What will they under-
you're writing a technical document, through an assembly procedure. stand, with their experience? What is
it's surprising how easy it is to lose To 'be usable, the document must their technical knowledge and
sight of this overall requirement after take the users from a state of in- vocabulary? How can they best be
page 1. The presentation can become complete knowledge about some sub- helped?"
an ego trip without your realizing it. ject to a condition of more complete Next, he builds step by step. He
On the other hand, it's hard to go knowledge. If it's a procedure, the in- breaks up complicated subjects into

simpler parts. He leads the users
gradually into new territory, helping

44 themi make their own discoveries.
With each step their confidence grows
and they want to learn and do more.

. At the end, the users know they haveI i succeeded-and, therefore, so has the
information designer.

The Elements of Information
Design

If we are going to start where he
users are and build step by step we
need a plan of action. We neew t

t3A decide:
8Vi VA N ' 'M what informativa; to include in the

B130t-In OVP documeni

Pow rnes .8 C noduls stailted show to organize it
W24.95-0~100 iciolea.how to present it so it's understand-
Veyr W1lonly $24.951 al

6116=23 VAC hiput We'll discuss these aspects under the
- 0 UV PBul4n headings of Conten!, Organization,

a:05 Regulatio and Format.
E 2-hoar Bum-in Content

- ~ < ~ P. UL Recognized The content of a document is the\ CSA * Corlfied specific technical material contained

Model HB5,VOVP \ aIA Got all the details anou in it. This should be carefully defined
S 105 standard open frames by boundary lines set down by the in-

In our new 1961 catalog, formation designer.
Content really has two aspects:IN-STOCK NATIONWIDE... FOR IMMEDIATE DELIVERY what information is included

ALA. Heaibvt lue er e'gtmar Corp 0266 N.M AML. Pthoenx P1. Asax. (Sup 27-1631 adwa
CAL: Pmtw. "- Soft E) 13U-901;Son FSeO"APel, =:(7:214)424.6anne.h&M~s (breadth) an htis its level of

Aem (406).-U SOL' 0. KSL Aso () 93-111 CT. Wll. 011 Sals Aego (2M) 567. eal(et) ipeeapewl
070PLAOrelo. OEM MkMq ~ leas (306) AA. Mnfv Corp.s Eeal(et) ipeeapewl

0MZ PO 7W iiCi 1 0()2"AN oMN raatA ' 3D1 AS0 6 s raan illustrate the im portant difference be-
k~~~ Iseo (210A0.hu~wrae~ac17) $04300 M16H.: =.1. "IT~ tween breadth and det:An. opera-

mom14amNJ: L*V4IIRAn Iso W6i2 506-ISS Asoc.(0: S W2 Vu.: tor's manual for a computer system
fSlOll 100 L--e An=~ (11111) 4114-1276. Syae CW 9@&0 (31%' 446587 OHIO0: Clevelandtc. Marlow
AarOM5 10 04"M Oeayw. Me low Asm(53 434573~ K I TlaAdvar"e TO&vuA" Sol" (910 might tell you to "remove and replace

PbUilling " JSr(03)3 Sai$M.JUmJ btolwIWS3(32.O77PtM.:Pftbufewhe
Miw Asset (411) 14113 TRXL Dala Advanve f'.c Sales4 (214) 34l61-MM Solld Stats EIOru (4) the printer's print welas
23221 H&~.00 Adwance Itedwa oon e (M0) 469466. Solid State Eled. (713) 772-403 UTAH: 5 Loft neesrykh oern

CqPLS AWc (1) 460-626 WASH.: 111oets Ja J;" (206 235-000, Factorleac. Co. (2011)2-2511 neesr." h subject ofpitwheel
Onlno Mcupfletrruc (lef=50. onrel~. u .A..Epr Sales 7 WJI replacement is thus "covered" in the

Nae~ Ceni 06.4t SuPPO Lid N0)711111414111 CA00S3EN: Ft. Lauc~lee FLA. ~e~iz= (0) rziW manual; that is, in terms of breadth,
it is part of the content. However, the

one MEUZPUIIC M lack of "how to" details may make
Power-One. Inc. * Powver One Drive - CaMarillo, CA 03010 this information of little use to many
(WS) 484-21011 * (WS) 967-3301 e TWX 910-336-207

SEE OUR COMPLETE PRODUCT LISTING IN EEM & GOLWBOOY'

38

- -'d.

printer users. Thus the proper depth depth is a topic diagram (figure 1), provides an easier visual check on
of information is not part of the con- which is an arrangemtnt of topics in such elements as breadth, depth, and
tent. boxes at different levels, with lines consistency of treatment.

A good tool to help a writer of joining related topics. It serves a pur- In figure 1, topics I and 2 are major
documentation analyze breadth and pose similar to that of an outline, but topics at the same level in the

diagram. They might be two major
BREADTH components of a system, or groups of

software, or procedures. Neither is a
subtopic of the other and they will be

SUSOJECT Otreated equally in the presentation.
ITROouCtIox Subtopics are shown under each

major topic: 1.1, 1.2, 1.3 under topic
I 1T 1, and 2.1 and 2.2 under topic 2.

DEPTH]These represent breakdowns of each
major topic. The diagram can con-

TOPIC 2 tinue on down to further depths of
subdivision and can also be extended
to the left and right as additional
topics are added at a given level.

We can see that the breadth of the
topic diagram, particularly at the ma-
jor topic level, tends to indicate the

breadth of content. The depth of the

Figure 1: A topic diagram is a useful tool for determining the breadth, depth and con- diagram indicates the depth of con-
sistency of a piece of writing Although similar in content to an outline, the tent. While this should not be con-

diagram provides a clearer visual check on how topics are handled. As shown, topics I sidered an infallible guide, it is useful
and 2 are major topics at the same level. Neither is a subtopic of the other and both will in prelimina.-y planning.

be treated equally when the writing is done. Subtopics represent breakdowns of each Another use of a topic diagram is
major topic As additional topics and subtopics are added the diagram can extend that it gives an idea of consistency of
downward and to the left and right coverage. A glance at figure I will tell

the writer if topics at the same level
are being treated with some con-

" sistency in how they are subdivided,
or if one topic is being pursued toC h o c egreater levels of detail than others.
Without such a guide, it's easy to
cover one topic in great detail and

GNT Makes a Tape Punch Staion and give other topics at the same level on-
ly token treatment or overlook themTape Reader/Punch Combinatio. completely.

Both are small, quiet, and econor - 8 1. Definition of content is as impor-

One of them will fit your needs exactlIy. tant for what is not included as for
what is. Many technical documents
include irrelevant information. This

tcan be particularly annoying in pro-
cedural documents, when users are
trying to accomplish an exacting task.
They want to get on with it, but are

The 4aW Combo The 3601 Punch continually being interrupted with ex-
traneous remarks that belong in some

Punching spee:! ! Pnchng speed: 50 or other part of the document or shouldReading spee: up to 150 Cps 75 Cps be left out entirely.
• RS-232-C serial interlace e RS-232-C serial interace Figure 2 shows a topic diagram for

• Utilizes all types of Mylarc and • Utilizes all types of Mylar* and this article. As you can see, in addi-
paper tape paper tion to defining content, such a

* Reliability: MTBF 100 million * Reliability: MTBF 100 nillion diagram shows a preliminary
characters characters organization or structure.

Contac your local dealer or call for complete specificalons.

eAUTOMATIC INC To proceed step by step, we need toUe G T A TOMA IC NC. know where we are going and a route

1560 Trapelo Road, Waltham, MA 02154 (617) 890-3305 Telex: 923318 to get there. In other words, we need
structure, or organization. Informa-

Mam, 19u1 0 YTE Puabhubof Im, 39

' 7. " * . .. U

tion must be grouped, sequenced, and Indexing and Headings
related in order to be understood. Indexing and headings are the
Otherwise, it is merely a jumble of means by which the organization of
disordered facts or ideas-a "shop- the document is made easily visible to
ping list." If we had to learn users. A writer may actually have a
everything by rote memory from good organization, but if it is not
shopping lists, we'd be in big trouble, clear to users, it will not really have
Once a good structure is established, served its purpose.
all kinds of details can be hung on it Indexing as used here includes both
and they will be understood and the standard type of index found at
remembered, the end of a document and the table

Organization is also what makes of contents. The index should be set
information in a document easily ac- up with the idea that users will
cessible. Accessibility depends on sometimes look for items alphabeti-
both the overall structure of the docu- cally, as in a dictionary. Many items
ment and how this structure is made that are too small or too specific to be
visible to the user through indexing included in the table of contents are
and headings. If information is organ- made accessible with a good index.
ized properly, the user will be able to Often a table of contents can be
turn quickly to the information he usefully constructed in two parts: an
wants. Once there, he will be able to overall table in front and more de-
continue with a minimum of routing tailed tables with each major section
to other parts of the document. of the document. This avoids an un-

The importance of structure or or- wieldy table up front. Figure 3 pro-
ganization can be illustrated by a vides an example of a two-part table
very simple example-a telephone of contents. The main table (on the
book. Have you ever stopped to left in the figure) would appear in the
think how useless a telephone book front of the document. Each major
would be if the names were listed ran- section would start with its own table
domly rather than alphabetically? of contents (on the right in figure 3)
The important aspects of structure or showing the more detailed headings
organization include indexing and and subheadings in the section.
headings, grouping and sequencing, A consistent set of headings serves
routing, and introductions and to make information accessible.
reviews. Headings also help users remember

WHAT IS G00
DOCUMENTATION

?

IN FORMNATIONi
DESIGN

INFORMATION
SDESIG N

CO ORAN ZATO FORMAT

Figure 2: A topic diagram written for this article.

Mann, 1961 0 SM PIbkofim Inc

40

where they are, which is just as useful during the planning stages in would normally be grouped together,
important. Thus high-level headings making visible the planned organiza- as in the example table of contents
should be repeated frequently, for tion of the document, shown in figure 3.
example as a running head at the top Whether the document is pro- Sequencing is one of the most
of each page. Having the relevant cedural or descriptive, grouping of critical parts of the structure. The
headings always in front of the user the topics should be based on a user is being led step by step from the
makes the structure visible, and de- logical pattern and the relevance of known to the unknown, from the
tails are then assimilated more easily. different items. For example, pro- simple to the complex. Here the top-

cedural tasks normally performed down structuring principle frequently
Grouping and Sequencing together (such as the various steps re- used in writing computer programs

The overall organization of the quired to start up a computer system) also applies. The sequence should
document is established by how the should be grouped together. In a begin at the top and give the readers
content material is grouped and se- system description, the individual the big picture before engulfing them
quenced. Again, the topic diagram is descriptions of system components with details. It is not unusual to begin

reading a document and find yourself
up to your ears in technical details
before you really know what's going

CONTENTS 2. SYSTEM COMPONENTS on.

LIST OF FIGURES 2.1 CENTRAL PROCESSING UNIT Most equipment operations and
CONTROL PANEL human activities have a natural or

LIST OF TABLES MICROPROCESSOR normal sequence that should be
DIRECT MEMORY ACCESS preserved in the documentation. For

INTRODUCTION 2.2 DRIVE CONTROLS example, you normally gather to-
[2SYSTEM COMPN S NUMERV COFTRIVS

2NUBER OF DRIVES gether all the tools and supplies re-
SSTEDRIVE COMBINTION quired for an activity before starting;

I2 VIDEO TERMINAL therefore, this information should
4 COMMUNICATIONS DISPLAY SCREEN

KEYBOARD logically precede the activity descrip-tion. It is disconcerting to have to
stop in the middle of a task and run to
the hardware store to buy some item.

Figure 3: An example of a two-part table of contents. By using an overall table in the
front of the document, and a more detailed table later, an initial unwieldy table is Routing
avoided where a user would be subjected to unwanted detail. Once you start using a document it

is inconvenient to have to refer to
other parts of the document, or to

LONG - TERM MEMORY other documents. The more often you
are routed, and the more pages you
have to thumb through to get there,

SHORT-TERM MEthe less useful the document. On theSHORT-TERM MEMORY 4other hand, if all information is

repeated at each point of need, a
ly, judgment is required in weighing

-/ -- " ,.these trade-offs. For example, you
V. wouldn't want to tell a user how to

solder a particular type of joint every
/ time it came up-you would set aside

a special section for this purpose.
1, ,,, However, if a safety precaution ap-

plies to a number of different tasks in
Sthe document, it is better to accept

the redundancy and repeat the
precaution.

Introductions and Reviews
A general rule is to prepare users

for what is coming and to remind
them of where they have been. Pro-

Figure 4: Summaries and long-term memory. In the human brain, memory is divided ceeding through a document, users
into short-term memory and long-term memory. Although the capacity of long-term may forget where they are, forget
memory is large. all information must first pass through a short-term memory. When what has gone before-and decide
writing. the inclusion of summaries, reviews, and question-and-answer sections is an ef- they didn't really want to learn this
fective way of passing information into long-term memory. anyway. Information should be

Mamh 1961 C BYTE Pubkacom W 4 1

r

designed to help users relate tain it in memory. Human memory, to include the rules that govern text
backward and forward and recognize to put it simply, consists of two parts, and illustrations-that is, how infor-
and retain key points along the way. "short-term" and "long-term." mation is presented on a page.

Further, readers need introductory Whereas capacity is very limited in The general rule is that language
instructions to help them find and use STM (short-term memory), the and illustrations should work
information. For example, the capacity of LTM (long-term memory) together. Each is an effective way of
numbering schemes for tasks or il- is large indeed. The catch is that in- presenting certain kinds of informa-
lustrations, the use of safety symbols, formation can get to LTM only tion, and relatively ineffective for
notes, cautions, and warnings, and through STM. Summaries and re- other kinds. When combined proper-
the treatment of information about views and question-and-answer ses- ly, they form a powerful presentation
tools and supplies should be briefly sions are effective ways of establish- technique.
explained. If these instructions are ing information firmly in LTM. This People will readily admit that pic-
backed up by consistent information important concept is illustrated in tures can do things that words cannot
presentation (see Format section), figure 4. and vice versa. And yet it is surpris-
users will quickly learn what to ex- ing how often we find ourselves
pect, no matter where they are in the Format reading words, words, words, when a
document. Format usually has the rather nar- visual or two would have helped the

Simple reviews at key points rein- row meanng of "physical layout of presentation considerably. Many
force information and help users re- the page." Here the term is meant also ideas become clearer with an iliustra-

OKDATARS MSOEOC3

Ae-

NORTHmTAR
9~~lmd andl .N" bodn" bVgm lw~
wr W w- p, alo r ATARI

949 416 00$ 14 19
Z.4i 64JK Q d $29S A 0w/t6K S 747

NIIZ-4I 32K 00 S2339 al 5 Dual Disk D00 $t099"

PAPERTIGRS NZ-1l 32K Quod $2689 Jowtcu .$ 44.95
SPIN 11iden S 99

--- ALTOS

--
Its 0 bd

ow l
md 240 inM. O_

Iinge U o 6 towe 6 ZENITH912C $74 4
SG 749 A=1 $ 12295 VO zwa ,a. 9 $0 5

A= 5995 Z89 w/48K 2 SlOs 12149 950C

Tbb"ERMINALS -

Scottsdale Sstems
| 6730 [. McDoweUl Road # !03. Scottsdale, Ariono 85257

86mon..Sat.

DP-9=$11"(602) 941-5856 Non 30 $3
0P400 $..1259 _ADM3AI 42 $79

OD"30 1s$,9 Expot pices slightly higher: TWX 910-950-0082 (IMEC SCOT) ft sear" s$59
MORE PRITODRN

1161l0 k 51409
O.*O VCO/A. ----- V"rJ IMom o... 129 W1 a lso Icudod / daWg Ic~ odd 24L Prcim -.bJo 00

S669 dm, po" swbjea to avolallrty. Arizona mtndkm odd SIL

Coerr4a 737 1769 NEC 5510 w 1tma 12699 WUaWWW Included d al produ
1- "

tion, and some kinds of information
can hardly be communicated at all
without one. If you want to tell some-
one what something looks like, show
a diagram or a photograph.

It is known that the left and right
sides of the brain are quite different.
For most people, the left side is domi- (u \LEFT HALF (WORD)

nant and works mostly with linear,
sequential logic (like a computer). It
is also the verbal side and controls
language.

The right side specializes in images,
music, pictures-it deals in spatial
and visual concepts, in contrast to the
linear, verbal left brain. Schools,
with their traditional emphasis on RVGHT hALF (PiCTUalS) .

verbal skills, have tended to neglect
the right side of the brain. People
who are less adept with their left
brain have suffered as a result. Ein-
stein, for example, was a poor stu-
dent in language, but had a great
ability to visualize (see figure 5).

The ideal combination is words Figure 5: The left and right sides of the human brain are very different. In most
and pictures working together, each humans, the left side. which works mostly with linear and sequential logic, is dominant.
doing what it does best. In a pro- The left side also controls verbal communications. The right side of the brain deals in
cedure, for example, words can tell spatial, visual, and more holistic concepts. One of the best ways of imparting informa-
readers what to do and how to do it; tion to the reader is through a combination of both words and pictures, thus enabling
pictures can tell them what it looks the reader to use both sides of the brain.

-1",
-j. .~~ and a6 ~? aS

*JtK ITTUS4" PiR SEC0ND. 'the 888
dramatIcally 1ncrease performanuc

any 100U ounviate k With;
.a diarbyto prke tag lower 9

i a a y available subsystem,
: o.88 the HR EDGE you

atwrite ADES fort

eisHr oato on Otr expanding
tine of Mass Storage Controllers

CP/M registered
and Subsystems.

TM of Digital Research
Seo us In Sooth #1620 WEST COAST COMPUTER FAIR

...
1 B , 4

.!rd iql SlEPuisahm

like and where it is. For descriptive (for example, clockwise in figure 6) to
material, words and diagrams will do make it easy to locate any symbol.
a good job of explaining and describ- Highlights and call-outs help the
ing, provided they are working user zero in on the main items of in-
together. When you decide to use pic- terest in a picture. A heavy outline or
tures to communicate with readers, shading or color, together with a call-
follow the flow through step by step. out of the item of interest, can make
Don't be content with offering an oc- the text and illustration mutually sup-
casional "amazement diagram" and a port each other and help the user
"see figure so-and-so." You can relate illustration to text.
perhaps wake up the right half of the Consistent, standard noroenclature
reader's brain this way, but to get it should be used in linking text to il-
working with the left half as a lustration, and indeed throughout the
unit-whole-brain learning-make document. Information becomes less
the words and pictures work accessible and less understandable if
together. the same item is referred to by dif-

Here are some guidelines on how to ferent names.
do this, discussed under the following
headings: keying text to illustrations, Positioning Text and Illustrations
positioning text and illustrations, and Because the text and related pic-
limiting information density. tures should work together, they

should be positioned close together.
Keying Text to Illustrations Ideally, the user should be able to

The mutual reinforcement of text w,;rk back and forth between text
and illustrations can be strengthened and illustration without having to
by keying the text to the illustration. turn a page. While this ideal is
This can be done by a liberal use of sometimes impractical, it is usually
highlights and call-outs, which are possible to keep the illustration close
"talked to" in the text. to the relevant text. For important,

For complicated diagrams, an in- frequently referenced figures, fold-
dexing system can be used. An exam- outs are sometimes the answer.
pie of this common technique is
shown in figure 6. Three parts of an Limiting Information Density
electrical unit are designated A, B, Information is like food. If readers
and C in the picture on the right. eat too fast, or too much at one time,
These same letters are used in the text they get indigestion. If information is
on the left to refer to these specific presented too fast or in too large
parts. This method can be used with doses, readers will get confused. This
fairly complex diagrams without con- is because of the limited capacity of
fusing the reader. The alphabetical or short-term memory. Therefore, like
numerical symbols take up little room food, information must be broken up
on the diagram and can be ordered into "bite-size" pieces to be digestible.

................................. .i.i i- .ie

...........
.................-..

................................... .- "...oo

Figure 6: Keying text to illustrations. The mutual reinforcement of text and illustrations
(as shown in figure 5) can be strengthened by keying the text to the illustrations through
the use of highlights and call-outs which are "talked to" in the text.

Mamrd 46 0 3 Pub© a'toq IMu

44

.. . . . • -' , ' " -

Good format does this. fusing and are less useful. To avoid a whatever is being pictured. Foi exam-
Language should be simple and profusion of details, illustrations can pie, if a simple block diagram of a

direct. Only words the reader be used in a progression from simple microprocessor leads off the series,
understands should be used, with to more complex. This is related to subsequent more detailed diagrams
new words explained as they are in- top-down sequencing. An initial and schematics should show the
troduced. Explanations are easier to overall figure can give the "big pic- various parts of the blocks in the
read and understand if sentences are ture," which is easy to understand same relative positions as the original
short and simple, and if words have and serves as a beginning structure block. An example is shown in figure
few syllables, for proceeding to more detailed il- 7. Note that the lower detailed

Illustrations should not be cluttered lustrations. In forming such progres- diagram preserves the relative posi-
with unnecessary information. If they sions, it's important to preserve the tions, established by the upper figure,
are too 'busy," pictures become con- relative locations of the parts of of the major parts of the system.

Earlier we said that microprocessor
literature is suffering from a bad case

(a) OWof "the jargons." However, youll see
by now that there is much more to
good documentation than avoiding

DATA BUS)jargon. You probably have had the
experience of reading something and
finding that it was very difficult to

M',o 1g US follow, even though you seemed to
Runderstand all the words. In this case,

1/0 @us the author managed to avoid
CONTROL technical terminology but failed in

other important areas. Good
technical dc:jmentation requires a
highly disc;paned approach, and that
approach is provided by information
design. Those who adopt a go-as-

CONPTROL LIS you-please approach may score a suc-
cess now and then, but it will be by
accident. They have no way of know-
ing whether they have really reached

their audience. In many cases they
have not. m

(7b)

RESTART

TSC RiES

--- ----- - /W£12 C RES
C$W CS0MPU ROM A? £18 01 ---
C3

SC

s
WA2

CS1
E

AI0 AS -£14 CR OR
All A; F2 PORT A

VMA 02l

Cs SEPR
A12 A10 - c::

CS C /

AO-9

Figure 7: To avoid reader confusion, illustrations should be used in a progression from less detail to more, An initial block diagram
(7a) can give the overall picture before going into greater detail (7b). When forming these progressions, it's important to keep parts in
the same relative positions.

Mami 10u1 C B'M Pubkawm Inc 45

